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Introduction
Statistical methods have rapidly developed over the past 
decades and become instrumental in data analysis of 
research articles, so that currently most journals ask the 
authors to describe in detail the statistical methods used 
for the analysis of their data in a separate section in the 
methodology. This is helpful, as it allows the internal validity 
of the findings presented in the article to be examined. In 
this review, based on more than 20 years of experience as 
an editor and reviewer, I will describe the most common 
mistakes I have encountered in manuscripts submittted to 
biomedical journals. I found these mistakes with more or 
less similar frequency in the submissions to both prestigious 
and small medical journals. Many of these mistakes can 
also be found in published articles, which means even some 
editors are not aware of these points.

Distribution of data
Many of the submitted manuscripts involve analysis of 
continuous variables like age, blood pH, and serum 
cholesterol level. One of the common mistakes is to treat all 
such variables similarly. They are presented by many authors 
as mean and standard deviation (SD) and compared by 
parametric tests like Student’s t test. However, one of the most 
basic steps in the analysis of these data is to determine if these 
variables are normally distributed or not.1 Only normally 
distributed variables should be presented as mean and SD; 
non-normally distributed variables should be presented as 
median and interquartile range (IQR)—the distance between 
the 25th and 75th percentiles.2 Parametric tests (for example, 
Student’s t test and one-way analysis of variance [ANOVA]) 
should only be used for the analysis of normally distributed 
variables, as normality of the distribution is one of the basic 
assumptions made by these tests and violation of which would 
lead to incorrect results.3 Variables that do not have a normal 
distribution should be compared with non-parametric (or 
distribution-free) tests such as Mann-Whitney U test and 
Kruskal-Wallis.1 But, how should we test if a variable has 
normal distribution? The one-sample Kolmogorov-Smirnov 
test is one of the most popular (non-parametric) statistical tests 
that can be used. However, as a useful rule of thumb (without 
access to the raw data, which is very useful for reviewers and 
editors), if the SD exceeds half of the mean value, then it is 
unlikely that the distribution of the variable is normal.4

SD vs SEM
Another common mistake in submitted manuscripts (even 
also in published articles) is using the standard error of 
the mean (SEM) instead of SD to indicate dispersion of 
the data. SEM is always smaller than the SD, as it is SD 
divided by the square root of the sample size. Some authors, 
inappropriately, use SEM instead of SD to imply that their 
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measurements were less dispersed. SEM is in fact the SD 
of the distribution of the mean, it therefore measures the 
precision the mean.1

Assume that you measure fasting glucose in 225 healthy 
men and find a mean glucose level of 90 mg/dL with an SD of 
15 mg/dL. Assume that the variable has a normal distribution, 
thus, almost 95% of the study sample (214 = 0.95×225 
people) are expected to have a blood glucose between 60 
(90 – 2×15) mg/dL and 120 (90 + 2×15) mg/dL (according 
to the characteristics of the normal distribution, that is, in 
a normal distribution, 95% of data are within the interval 
mean±2×SD). Assume that the sample was representative of 
the population. Then, we can state that 95% of people in the 
studied population have a blood glucose level between 60 
and 120 mg/dL. That is of course helpful. But, suppose that 
our researcher studied 900 people instead of 225 and came 
to the same mean (90 mg/dL) and SD (15 mg/dL). What 
will have changed? Our statements would be exactly the 
same as before. Here again, based on the results obtained, 
we can state that 95% of people in the studied population 
have a blood glucose concentration between 60 and 120 mg/
dL. The only difference, as most of you intuitively felt, is that 
when you study 900 people, the results are more precise than 
those obtained when you study 225 people.

Suppose that we try to do the research with 225 people 
100 times; that is to take samples of 225 people 100 times, to 
measure their blood glucose. Then, we will have 100 means 
(and 100 SDs). Of course these 100 means will not be exactly 
equal and distributed around a number—“mean of means.” 
This “mean of means” is the closest possible value to the true 
population mean. To examine the level of dispersion of these 
100 means around their “mean of means,” we can calculate 
their SD. It can be proved that SEM is a good estimation for 
this SD.1,3 Fortunately, for the derivation of this SD, we do 
not need to run the experiment 100 times and we can simply 
calculate it from the SD derived in one experiment (here 15 
mg/dL). As mentioned earlier, SEM for the 225-participant 
study is:

For the 900-participant study, the SEM is:

Regardless of the distribution of the variable in the 
sample, the distribution of the means is usually normal, thus, 
considering the characteristics of the normal distribution, 
95% of all possible values of the mean are within almost 
2×SEM around the mean value. In other words, this interval 
is the 95% confidence interval (95% CI) of the mean. It means 
that in our examples, for the 225-participant study, with a 
probability of 95%, the real mean of the population would be 
between 98 (100 – 2×1) mg/dL and 102 (100 + 2×1) mg/dL; 
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[here, 34.29] exceeds the number of participants [here, 12]), 
we should not report any number after the decimal place. 
When the number of participants is equal to or less than 
20, it is better not to report percentage at all, as it may be 
misleading.5 Furthermore, it is better to report the 95% CI of 
the percentage, particularly if that is the primary outcome. 
Therefore, the above statement should be presented as, “of 
35 participants, 12 (34%; 95% CI: 18–51%) had fever.” From 
another perspective, when considering the width of the 95% 
CI, reporting the prevalence with a higher precision sounds 
unreasonable.

Reporting p values
In some manuscripts, authors reported p values as p<0.05, 
p>0.05 or p=NS. Many authorities believe that it is better to 
report the exact value of the p value like p=0.023, p=0.647. 
Previously, p values were read from statistical tables and 
therefore, determination of their exact value was difficult. 
However, currently, statistical software programs report 
the exact value of p. Sometimes, when the p value is very 
small, say 0.00001, the software that by default reports the 
value in only three digits after the decimal point, shows the 
value as ‘0.000’ and the authors incorrectly report the value 
as p=0.000 or worse p<0.000. The p value is a probability 
and thus can vary from a minimum of zero to maximum of 
one. If the value is either one or zero, the event will happen 
(or not happen) for sure. In experimental research, however, 
we can never be sure and thus, we are practically facing p 
values that are more than (not equal to) zero and less than 
(not equal to) one. Therefore, if a software reports a p value 
as 0.000, the correct presentation would be p<0.001. As a 
p value is a probability, it can never be negative and thus it 
can never be presented as p<0.000. In reporting p values, it 
is not necessary to report more than three digits after the 
decimal point. Some journals may ask you to also report the 
statistical test used, like Pearson χ2=1.796, df=3; p=0.62.

95% confidence interval vs p value
Sometimes, manuscripts present both p value and 95% 
CI as statistics. For example, we may see statements like 
“smoking was significantly (p=0.04) associated with a 
higher incidence of lung cancer (OR=2.6; 95% CI: 1.3–5.2).” 
A p value can only indicate the probability of observing the 
difference by chance, when there is really no such difference 
in the population (type I error); it does not provide any 
information on the amount of the change—the so-called 
effect size. On the other hand, 95% CI not only tells us the 
effect size, but also if the difference is statistically significant 
(for example for OR, the difference is significant if the 95% 
CI does not contain 1). For the above example, the 95% CI 
of OR (1.3–5.2) indicates that with a probability of 95%, the 
risk is not less than 1.3 and is not more than 5.2 times that 
for non-smokers, hence, the effect size; since the 95% CI 
does not contain 1, it reflects that smoking has a significant 
effect on the incidence of lung cancer. Therefore, it is not 
necessary to mention both p value and 95% CI; the latter 
is sufficient and the statement could instead be written as 
“smoking was associated with a higher incidence of lung 
cancer (OR=2.6; 95% CI: 1.3–5.2).” 

the 95% CI for the mean for the 900-participant study is 99 
to 101 mg/dL. It is now clear that the 95% CI for the mean 
for 900 participants (2 = 101–99 mg/dL) is half of that for 
225 participants (4 = 102–98 mg/dL)—the measurements 
of the mean were twice as precise in the 900-participant 
study compared to those made in the 225-participant study. 
It simply shows that to get double the precision we should 
quadruple (22) the sample size (900=4 × 225).

SEM is in fact not a measure of dispersion of the studied 
variable. It is a measure indicating how precise the mean 
value is.1,3 In scientific writing, when we want to present a 
measure of data dispersion, we should use SD, whereas to 
present how precise a mean value is measured we should 
present SEM. The standard error is not specific for the mean 
and we can calculate it as well for other statistics like odds 
ratio (OR), relative risk, and percentages (for example, 
prevalence and incidence rate). And that is why these 
statistics are usually reported along with their 95% CIs.2 
Do not forget that 95% CI and standard error are closely 
correlated and one can simply be calculated from the other. 
However, we usually report 95% CI rather than the standard 
error. The standard error, however, may be used as error 
bars in graphs to present the accuracy of the measurement.

Inappropriate precision in reporting statistics
The precision with which we report statistics should depend 
on the precision of our measurement. For example, in a 
research study on adults, we usually record age in years as 
generally measuring age more precisely has no implication 
clinically. In the same study, however, we may measure blood 
pH with two or even three digits after the decimal point, 
as minute changes in blood pH are associated with serious 
clinical implications. Statistical software programmes, 
however, often calculate the results with a predefined 
precision, say three digits after the decimal place, no matter 
how precisely the raw data were measured. Therefore, unless 
rectified, software programmes report the mean of both of 
the above-mentioned variables, age and blood pH, with three 
digits after the decimal point. In submitted manuscripts, it 
is not uncommon to read statements like “the mean age of 
patients was 37.351 years.” When reporting an age in one-
thousandth of a year (almost 9 hours), it means that we 
asked participants about the hour they were born! While, we 
usually only ask them about their birth year. The above mean 
should probably be reported as ‘37’ or ‘37.4’ years with no 
more precision. There are no consensus on the number of 
digits to be reported in presenting the mean and SD. While it 
can be shown mathematically that the mean and SD should 
be reported with the accuracy used in the measurement of 
the raw data, some authorities believe that they should be 
reported with one extra digit.4,5

A similar argument is true for percentages. The 
prevalence of fever in the statement “of 35 participants, 
12 (34.29%) had fever” should have been written as ‘34%.’ 
When increasing or decreasing one participant of 35 
participants changes the percentage by almost 3%, talking 
about 0.29% is not reasonable. Therefore, as a rule of thumb, 
when the number of total participants (the denominator) is 
equal to or less than 100 (or, when the value of percentage 
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Sometimes the situation is worse; the p value contradicts the 
95% CI. The statement “(OR=3.1; 95% CI: 0.97–9.91, p<0.05)” 
has internal inconsistency! While p is significant, the 95% 
CI for OR contains 1, which is impossible. Other impossible 
statements would be “(OR=4.3; 95% CI: 1.12–16.51; p=0.06),” 
where the p value is not significant but the 95% CI does not 
contain 1. These errors are more common in the tables of 
submitted (and published) manuscripts. The general trend in 
the use of p value vs 95% CI is to use the latter.

Calculation of the minimum sample size
In many trial reports, the number of people studied is stated 
but the necessary information to calculate the minimum 
sample size is not presented. For example, in prevalence 
studies, the authors usually do not provide the expected 
frequency of the disease and the acceptable error in the 
calculation of the prevalence; or in clinical trials, the authors 
usually fail to provide the minimum change important 
to them (of clinical importance), the effect size, and the 
expected SD in the variable. In this way, it is impossible to 
calculate the minimum sample size.3

These problems usually arise from failure to describe the 
study hypothesis in enough detail. For example, in many 
submitted manuscripts, you may read “our hypothesis is 
that drug X is better than drug Y for reduction of low-back 
pain.” Whereas, a better hypothesis would be “compared to 
drug Y, drug X can reduce, by at least 20%, the pain score of 
women with mechanical low-back pain, as measured by the 
visual analog scale,” where the study population (women 
with mechanical low-back pain), the outcome (drop in 
pain score), measurement (by visual analog scale), and the 
expected effect size (20%) are described.

Sometimes, we receive studies that are descriptive in 
nature, say studies on the prevalence of malaria in a region. 
In such studies, since there is generally no hypothesis, no 
statistical tests are necessary. Some authors, however, try to 
decorate such manuscripts with inappropriate use of statistical 
tests and p values. Another example of inappropriate use 
of statistical tests is when we examine all members of the 
population rather than a sample.

Yet another problem that is closely correlated with 
inappropriate sample size is the issue of distinguishing “clinical 
significance” from “statistical significance.” Sometimes, we 
read manuscripts that found a statistically difference that 
is not clinically significant. For example, we read “the mean 
serum cholesterol level in the study group (189 mg/dL) was 
significantly (p=0.031) higher than that in the control group 
(187 mg/dL).” This difference, though statistically significant, 
is not of any clinical importance and was probably the result of 
the higher-than-necessary sample size studied. That is why the 
difference of clinical importance is considered in the calculation 
of the minimum sample size. Recruiting more people than 
necessary may result in the observation of differences that, 
though statistically significant, have no clinical significance. 
Apart from being unethical, study participants fewer than the 
minimum sample size may result in type II errors.3

Another reason why we may come to statistically significant 
results without a real difference existing in the population 
(type I error), is multiple comparisons made in the data 

analysis.3 For example if we want to compare the means of five 
groups by comparing every two groups by Student’s t test, we 
need to run 10 tests. Even if there is no real difference between 
the five studied groups, with a probability of almost 40%, we 
will come to a statistically significant p value. This issue will 
be resolved either by using the appropriate test (eg one-way 
ANOVA) or by correcting the cutoff value for p for multiple 
comparisons (say, by the use of Bonferroni’s correction).

Non-significant p values
In submitted manuscripts, sometimes we encounter 
statements like “fasting blood sugar levels in men (97.3 mg/
dL) were higher than in women (90.1 mg/dL), however, the 
difference was marginally significant (p=0.057).” The cutoff 
value of 0.05 (the probability of 1 in 20) was chosen arbitrarily 
by Fisher to distinguish “significant” from “non-significant” 
differences. There is in fact no logical rationale behind the 
selection of ‘0.05’ for the cutoff value. However, when we 
choose the cutoff value of 0.05 (which is very common in 
biomedical sciences), we can no longer talk about “marginally 
significant,” “partially significant,” or …—a difference 
is either significant (p<0.05) or not. In the discussion of 
manuscripts, we sometime encounter statements like “…the 
difference was however not statistically significant (p=0.057). 
If we had recruited more people the difference might become 
significant.” I believe this is not acceptable, as the authors 
presumably calculated the minimum sample size of their 
study and recruited the necessary participants.

If a p value is non-significant, it may be due either to the 
fact that there is really no difference in the population, or 
the study failed to pick up the real difference that existed in 
the population (type II error). Therefore, a non-significant p 
value cannot simply be interpreted as “no difference” in the 
population. Instead, the authors/reviewers should perform a 
power analysis to determine the study power and see whether 
the study is able to detect the difference if there were really 
a difference in the population.3 If the minimum sample size 
was determined correctly, then we can be confident that the 
study power is also correct.

Conclusion
Submitted manuscripts and even some published articles 
contain statistical mistakes in the data analysis and presentation. 
Having a good command of statistics would help editors, 
reviewers and authors to better evaluate a study. This review 
touches on some of the most frequent mistakes; however, each 
of these mistakes should be examined in more detail.
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